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Abstract: Several localisation algorithms exist for wireless sensor networks that use angle of 
arrival measurements to derive node position. However, there are limited options for actually 
obtaining the angle of arrival using resource-constrained devices. In this paper, we describe a 
technique for determining node bearings based on radio interferometric angle of arrival 
measurements from multiple anchor nodes to any number of target nodes at unknown positions. 
Least squares triangulation is then used to estimate node position. The position estimation is 
carried out by the node itself, hence the method is distributed, scalable, and fast. Furthermore, 
this technique does not require modification of the mote hardware because it relies only on the 
radio. Experimental results demonstrate that our approach can estimate node bearing with an 
average accuracy of 3°, and node position with sub-metre accuracy in approximately 1 s. 
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1 Introduction 

Wireless sensor network (WSN) localisation has matured to the 
point where we can achieve accuracy in the sub-metre range. 
However, most techniques require sophisticated sensors, a 
heavy-weight infrastructure, extensive PC processing, and/or 
long localisation latencies. An approach that does not require 
additional hardware runs on the nodes themselves, and is fast 
enough to support mobility as well as stationary localisation, 
would be a step forward in this domain. 

Localisation typically involves the transmission of a signal 
by at least one node, followed by signal processing on other 
participating nodes (Hightower and Borriello, 2001). Radio 
Frequency (RF), acoustic, infrared, and visible light are 
commonly used modalities in WSNs for determining spatial 
relationships. The choice of signal modality is important for 
accurate localisation, and depends on node hardware, the 
environment, and the application. WSNs are developed to 
provide inexpensive wide-area observation capability, and 
therefore it is generally undesirable to add additional hardware 
to the sensor board, because this increases cost, weight, and 
resource utilisation. Since all wireless sensor nodes have 
onboard radio hardware, RF propagation has become a popular 
signal modality for localisation. RF signal properties such as 
strength (Bahl and Padmanabhan, 2000), phase (Maróti et al., 
2005), and frequency (Chang et al., 2008) have all been 
analysed to derive range or bearing for position estimation. 

Radio interferometric positioning has emerged as an 
accurate method for sensor node localisation (Kusý et al., 
2007b; Amundson et al., 2008; Chang et al., 2008; Lucarelli 
et al., 2008). The Radio Interferometric Positioning System 
(RIPS) demonstrated that the relative position of nodes can 
be determined accurately by only using their radios (Maróti 
et al., 2005). Although the resource-constrained nodes could 
not sample the pure RF signal fast enough, they could 
process the lower-frequency envelope of the beat signal that 
resulted from two high-frequency signals interfering. The 
difference in signal phase measured by two other nodes is a 
linear combination of the distances between the transmitters 
and receivers. Using radio interferometric ranging in this 
manner, relative node positions could be obtained in 
networks containing as little as six nodes. 

There are several disadvantages associated with RIPS. To 
actually localise the nodes, phase differences must be obtained 
over several frequencies due to the modulo ambiguity caused 
by the phase wrapping to zero at 2π. To achieve precise results, 
RIPS relies on interferometric measurements using a large  
 

number of combinations of four nodes. These measurements 
are carried out in a sequential manner. Finally, the data need to 
be routed back to the base station because the localisation 
algorithm runs on a resource-rich PC-class device. The entire 
process is relatively slow; for example, the results reported in 
(Maróti et al., 2005) took 50 min to obtain. 

In this paper, we present TripLoc, a rapid distributed 
localisation method that uses radio interferometry, but overcomes 
many of the drawbacks of RIPS. Although we employ the 
same underlying radio interferometric measurement technique, 
our approach is otherwise original and based entirely on new 
work. The basic idea behind TripLoc is to group together three 
of the four nodes involved to form an antenna array and act as 
an anchor node. The two transmitters and one of the receivers 
are arranged in such a manner that their antennas are mutually 
orthogonal to eliminate parasitic antenna effects (see Figure 1). 
Since all the antennas are within half the wavelength, the 
modulo ambiguity is also eliminated. Each target node that 
needs to be localised acts as the second receiver in this scheme. 
The measured phase difference between the receiver of the 
array anchor node and the target node constrains the location of 
the latter to a hyperbola. This can be considered a bearing 
estimate, assuming that the node is not too close to the array. 
Hence, two such anchor arrays (or three non-collinear ones in 
degenerate cases) are enough to localise any number of nodes 
within range. 

Figure 1 TripLoc antenna array implementation using three 
XSM motes. The name TripLoc comes from the fact 
that a triplet of nodes constitutes an anchor node array 
in our localisation scheme 

 

This paper presents several new contributions to radio 
interferometric localisation. 
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1 We describe a radio interferometric angle-of-arrival-based 
technique for determining node bearing and position. 

2 We provide a detailed analysis that shows our bearing 
estimation and localisation technique is robust to 
measurement noise and approximation error. 

3 We design a real-world implementation using COTS sensor 
nodes, in which bearing estimation and triangulation is 
performed entirely on the resource-constrained motes 
without additional hardware support. 

4 We present experimental results that show our approach 
can rapidly and accurately estimate node bearing and 
position. 

The remainder of this paper is organised as follows. In Section 2 
we discuss other angle-of-arrival and radio interferometric 
localisation techniques for WSNs. Section 3 describes our 
system design, followed by an error analysis in Section 4. In 
Section 5, we describe our implementation on a real-world 
WSN platform. In Section 6, we evaluate our system based on 
experimental results. We conclude in Section 7. 

2 Related work 

The past decade has seen the emergence of numerous 
methods for sensor network localisation. These methods 
take different approaches, and use different propagation 
media, such as acoustic (Harter et al., 1999; Priyantha et al., 
2000), radio frequency (Bahl and Padmanabhan, 2000; 
Maróti et al., 2005), and infrared (Want et al., 1992). The 
two general approaches to localisation are ranging, in which 
a node estimates its distance to multiple reference points; 
and bearing estimation, in which a node estimates its 
bearing to multiple reference points. Trilateration and 
triangulation-based techniques can then be respectively used 
to determine node position. 

2.1 Angle of arrival 
Node position is typically determined by estimating range or 
bearing to known positions. TripLoc employs the latter 
approach, whereby bearings from several anchor nodes are 
estimated, and then used to derive location. Although 
several techniques exist for determining node position based 
on bearing information (Esteves et al., 2003; Niculescu and 
Nath, 2003; Biswas et al., 2006; Rong and Sichitiu, 2006; 
Ash and Potter, 2007), there are few options for actually 
measuring signal AOA in WSNs. Currently available 
methods for bearing estimation require a heavy-weight 
infrastructure (Nasipuri and el Najjar, 2006), rotating 
hardware (Römer, 2003; Chang et al., 2008), directional 
antennas (Ash and Potter, 2004), and/or expensive and 
sophisticated sensors (Friedman et al., 2008). 

Angle of arrival can be used in different ways for spatial 
coordination. Triangulation, for example, is the process of 
determining the position of an object from the bearings of 
known reference positions. Two such reference positions (or 
three non-collinear ones in degenerate cases) are enough to 
localise any number of nodes within range. Esteves et al. 

(2003) gave a method to determine position based on the 
angular separation (the difference in bearings) between 
beacons. Other angle of arrival positioning approaches have 
been developed, including multi-angulation using subspace 
methods (Ash and Potter, 2007), anchor bearing propagation 
(Niculescu and Nath, 2003), and semi-definite programming 
(Biswas et al., 2006). Bearing estimates can also be useful 
when anchor positions are unknown. Altun and Koku 
(2005) and Bekris et al. (2004) presented mobile robot 
navigation methods for arriving at a target position by only 
observing angular separation between two pairs of landmarks. 

A broad spectrum of acoustic beamforming techniques 
have been proposed to find the angle of incidence of a 
signal at an array of sensors. The most common techniques 
include delay-and-sum beamforming, Capon beamforming 
(Capon, 1969), MUSIC (Schmidt, 1986), ESPRIT (Roy et 
al., 1986) and min-norm (Kumaresan and Tufts, 1983) 
algorithms. Since the time of flight of the signal from the 
source to sensors in the array varies based on their pairwise 
distances, sensors receive the signal with different phases. 
While all of these methods compute the bearing of the 
source from the data streams sampled at the individual 
sensors, they differ greatly with respect to their angular 
resolution as well as their computational requirements. 

The Cricket Compass is a device which uses ultrasound to 
determine orientation with respect to a number of ceiling-
mounted beacons (Priyantha et al., 2001). Two receivers are 
mounted a few centimetres apart on a portable device, and the 
phase difference of the ultrasonic signal is measured to 
determine bearing. Although both the Cricket Compass and our 
approach measure signal phase difference to derive AOA, the 
two systems use different hardware, signal modalities, phase 
disambiguation techniques, and bearing derivation algorithms. 
The Cricket Compass has an accuracy of between 3° and 5°, 
depending on the orientation of the compass. The bearing 
accuracy of the Cricket Compass is comparable to TripLoc; 
however, Cricket requires customised hardware that includes 
an ultrasonic transceiver to compute bearing. Furthermore, 
ultrasound signal attenuation is much higher than radio, 
limiting the range of the Cricket Compass. 

2.2 Radio interferometry 

In Section 1, we described radio interferometric ranging. Here, 
we review other localisation techniques for WSNs that use 
radio interferometry, the RF method we employ in TripLoc. 
Although the techniques described below all employ the same 
measurement mechanism, the way the measurement data are 
used for localisation vary significantly and are distinct from the 
localisation method used in TripLoc. 

mTrack is an extension of RIPS for tracking mobile 
nodes that makes several substantial improvements, such as 
incorporating the effects of mobility into the localisation 
algorithm (Kusý et al., 2007b). This is important because 
the position of the mobile node will change during the 
ranging measurement, and the RF signal will undergo  
Doppler shift due to the movement of the mobile node 
relative to the transmitters. In addition, mTrack computes 
the location of the tracked node more efficiently by 
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computing the intersection of two hyperbolic curves. Each 
curve represents an equation that constrains the location of 
the tracked node to some point on each hyperbola. By 
finding the intersection of two such curves, the position of 
the tracked node can be determined. In a 30 × 30 m field, 
mTrack reported an accuracy of 0.94 m, 0.18 m/s, and 
11.61° in position, speed, and heading, respectively. 
Although TripLoc is unable to directly compute speed and 
heading, it performs localisations an order of magnitude 
faster, does not require centralised processing, and its 
position accuracy is slightly better than mTrack. 

dTrack is a system for tracking mobile nodes that uses 
the same underlying principle of radio interferometry as 
RIPS, but measures signal frequency rather than phase 
(Kusý et al., 2007a). Tracking is accomplished by observing 
the Doppler shift in frequency that occurs when the source 
of a transmitted signal is moving relative to an observer. 
Because Doppler shift is determined by the relative velocity 
of the transmitter and receiver, absolute translational 
velocity of a mobile node can be determined using a priori 
knowledge of the transmitted frequency and the frequencies 
observed by stationary sensor nodes at known positions. 
Measurement noise was addressed by employing an 
Extended Kalman Filter (EKF). However, it was observed 
that the EKF did not respond well to sudden manoeuvres of 
the mobile node, and so it was combined with a constrained 
nonlinear least squares algorithm, which would update the 
EKF state if a manoeuvre was detected, thereby reducing 
the filter convergence time significantly. In a 50 × 30 m 
field, dTrack reported a combined CNLS/EKF location 
accuracy of between 1.4 m and 2.5 m in the best and worst 
case, respectively. The accuracy of the speed and bearing 
estimates were 0.1–0.4 m/s and 7–18°, respectively, and the 
location accuracy improvement of the CNLS/EKF algorithm 
over just the EKF was 9–36%. The main drawback with 
dTrack, compared with TripLoc, is that the sensor node 
must be moving in order to determine its position. 
Furthermore, the speed of the node must fall between fairly 
tight lower and upper bounds, determined by the carrier 
frequency and RSSI sampling rate of the mote radio. On 
average, dTrack position error is half a metre greater than 
TripLoc. 

SpinLoc also uses the Doppler shift in the beat signal to 
determine position, however, unlike dTrack, the transmitter 
rotates about a fixed point at a constant speed (Chang et al., 
2008). This has the advantage that the system will still work 
when nodes in the sensing region are stationary (i.e. translation 
is not required, as it is for dTrack). Spinning beacons and an 
assistant node at known positions transmit an interference 
signal with a predetermined beat frequency. A target node at an 
unknown position, as well as a reference infrastructure node, 
receives the signal. Because the beacon is spinning, the signal 
will undergo a Doppler shift, based on the instantaneous 
relative speed of the beacon and receiver. Using a Doppler 
angulation algorithm, the bearings of the target and reference 
node from the beacon are computed. Triangulation is then used 
to determine the position of the target node. What is perhaps 
most impressive about this system is that SpinLoc was able to 
obtain accurate results in a parking garage, a high multipath 
environment. In a 8 × 10 m area, the median position error for 

SpinLoc was 39 cm, and in 90% of cases the error was 70 cm 
or less. SpinLoc performs slightly better than TripLoc; 
however, it requires specialised rotating hardware. 

Lucarelli et al. (2008) follow a probabilistic approach to 
localisation, based on non-parametric belief propagation. 
The model was designed to take advantage of specific 
properties of radio interferometric ranging, such as the 
quad-range geometry of the nodes participating in the 
measurement. Although the approach is resource intensive, 
it was developed primarily to handle the uncertainty of 
wave propagation in multipath environments, as well as 
other causes of measurement noise. Using the same phase 
measurement data that were used by Maróti et al. (2005), 
the authors present simulation results of less than 15 cm 
average position error. 

An adaptive radio interferometric positioning method 
was developed by Chang et al. (2007) that improves upon 
the positional accuracy of RIPS by only considering pairs of 
transmitters (for interference signal generation) that will 
give the best results based on the estimated position of the 
target node. An Estimation Error Model was developed 
which optimally selects the transmitters. Adaptive RIPS 
demonstrated an improvement over static RIPS of 47% and 
61% for single and multiple targets, respectively. 

3 System design 

3.1 Radio interferometric measurements 
Our system consists of multiple antenna array anchors at 
known positions and cooperating target sensor nodes at 
unknown positions. The arrays contain three nodes, a primary 
(P) and two assistants (A1, A2), as shown in Figure 2. We 
assume that the position of the midpoint of the array is 
known, as well as the distance between the antennas in the 
array. At a predetermined time, the primary, P, and one of 
the assistants, A1, transmit a pure sinusoidal signal at 
slightly different frequencies, which interfere to create a 
low-frequency beat signal whose phase is measured by the 
other assistant in the array, A2, and a receiver node, R, at an 
unknown position. Such a measurement is termed a radio 
interferometric measurement (RIM). 

Figure 2 Array containing a primary node (P) and two assistant 
nodes (A1, A2). A target node (R) computes its bearing 
(β) from the array (see online version for colours) 

 

The difference in phase, 
2
,R Aϕ ϕ ϕΔ = −  measured by 

receiver nodes R and A2 is a linear combination of the 
distances between the transmitters and receivers (Maróti  
et al., 2005), 

( )( )
2 1 2 1

2 2 ,PA A A A R PRd d d d modπϕ π
λ

Δ = − + −  
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where λ is the wavelength of the carrier frequency, dPR is 
the distance between the primary node and target receiver 
node, 

1A Rd  is the distance between the assistant transmitter 

and the target receiver node, and 
1 2
, ,PA PAd d  and 

1 2A Ad  are 
the respective distances between all pairs of nodes in the 
array. Note that the nodes in the array are equidistant from 
each other, and therefore 

2 1 2
0,PA A Ad d−  so the phase 

difference can be simplified: 

( )( )
1

2 2 .A R PRd d modπϕ π
λ

Δ = −  (1) 

We denote the distance difference 
1A R PRd d−  by 

1A PRd  and 
refer to it as a t-range. From equation (1), we see that if 

1
,

2 2A PRdλ λ
− < <  the phase difference will fall in the interval 

(–π, π). When this is not the case, the possible range of ϕΔ  
will exceed 2π, which results in a modulo 2π phase ambiguity. 
To avoid this ambiguity, we would like the maximum possible 

distance difference to be less than 
2
λ . The maximum distance 

difference will occur when the receiver node is collinear with 
the transmitters P and A1. 1A PRd  then corresponds to the 
distance between the primary and assistant nodes. Therefore, to 
eliminate the modulo 2π phase ambiguity, we require the 
distance between antennas in the array to be less than half the 
wavelength of the carrier frequency. 

Having removed the modulo operation, we can 
rearrange equation (1) so that known values are on the right-
hand side: 

1 2A PRd ϕλ
π

Δ
=  (2) 

3.2 Bearing approximation 

The t-range 
1A PRd  defines an arm of a hyperbola that 

intersects the position of node R, and whose asymptote 
passes through the midpoint of the line 1 ,A P  connecting the 
primary and assistant nodes. Figure 3 illustrates such a 
hyperbola with foci A1 and P. The absolute value of the 
distance differences between the foci and any point on a 
hyperbolic arm is constant, formally defined as 

2 2

2 2 1x y
a b

− =  

where (x, y) are the coordinates of a point on the hyperbola, 
a is the distance between the hyperbola centre and the 
intersection H of the hyperbola with the axis connecting the 
two foci, and b is the length of the line segment, 
perpendicular to the axis connecting the foci, that extends 
from H to the asymptote. 

The hyperbola in Figure 3 is centred at O, and the 
distance between O and either focus is denoted by c. 
Furthermore, it can be shown that c2 = a2 + b2 (Kendig, 
1938). From the figure, we see that the bearing of the 

asymptote is 1tan .b
a

β − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Therefore, in order to solve for 

β, we must determine the values of b and a. 

Figure 3 The t-range defines a hyperbola that intersects node R, 
and whose asymptote passes through the midpoint of 
the two transmitters in the array (see online version  
for colours) 

 

We can solve for a by observing that 

1 1A R PR A H PHd d d d− = −  

because, by definition, the distance differences between the 
foci and all points on the hyperbola are constant. From 
Figure 3, we see that we can substitute (c + a) for 

1A Hd  and 
(c – a) for dPH, and therefore 

( ) ( )
1

2A R PRd d c a c a a− = + − − =  

From equation (2), we know the value of 
1

,A R PRd d−  which 

is the t-range, and therefore 1 .
2
A PRd

a =  We can then solve 

for b, using 2 2 .b c a= −  In terms of known distances, the 
bearing of the asymptote is defined as 

1 1

1

1

1

2 2

1

1

2 2
tan

2

cos .

A P A PR

A PR

A PR

A P

d d

d

d
d

β −

−

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟=
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3) 

In Figure 3, we see the case where 
1

0,A PRd >  and the 
position of R lies on the right arm of the hyperbola. If the 
phase difference is negative (i.e. 

2R Aϕ ϕ< ) then the position 
of R will lie on the left arm of the hyperbola. When this is 
the case, β is taken clockwise, and we must adjust it by 
subtracting it from π. 

The line 1A P  connecting the two foci is called the 
transverse axis of the hyperbola, and is a line of symmetry. 
This implies that although we know the value of b, we do not 
know its sign, because mirrored positions on either side of the 
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transverse axis will result in the same 
1A PRd . Therefore, the 

asymptote bearing β we obtain using this method could be 
either positive or negative. To find which bearing is correct, we 
can switch the roles of the assistant nodes in the array and 
perform another RIM. This will generate a different t-range, 
and hence another hyperbolic arm with foci A2 and P. 

Each hyperbola provides us with two bearing candidates 
±βi, where βi is the angle of the asymptote with the 
transverse axis, 1A P . Of course, these angles will be offset 

from the global x-axis, because the orientation of 1A P  may 
not be 0. Adjusting for this, one of the β1 bearings, and one 
of the β2 bearings will point in the same direction, which 
will approximate the actual bearing of R, as illustrated in 
Figure 4. Due to the position difference between the centres 
of the two hyperbolas, we do not expect these two angles to 
be equal, therefore we define a small threshold εβ, such that 
if 1 2 ,ββ β ε− <  these two angles are considered a match. 
We then take the average of the two angles to obtain our 
bearing estimate, ˆ.β  

Figure 4 Determining the true bearing of R is accomplished by 
selecting +β or –β from each primary-assistant pair, 
such that the difference between the two angles is 
below the threshold εβ 

 
Because points on the hyperbola converge with the 
asymptote as their distance from the hyperbola centre 
increases, the bearing approximation error is larger when R 
is close to the array. We therefore make the assumption that 
node R is a sufficient distance from the array. In Section 4, 

we show that this distance does not need to be very large 
when using small-aperture arrays. 

3.3 Triangulation 

Having approximated the bearing of target node R from a 
sufficient number of arrays, we can estimate its position using  
triangulation. Triangulation is the process of determining the 
position of an object by using the bearings from known 
reference positions (Esteves et al., 2003). When two reference 
points are used (Figure 5a), the target position will be identified 
as the third point in a triangle of two known angles (the 
bearings from each reference point), and the length of one side 
(the distance between reference points). 

The intersection of bearings can be calculated using the 
following equations: 

( ) ( )( )
( ) ( ) ( )

2 1 1 2 1
2 2

2 1 2

tan
cos

cos tan sin
y y x x

x x
α

α
α α α
− − −

= +
−

 (4) 

( ) ( )( )
( ) ( ) ( )

2 1 1 2 1
2 2

2 1 2

tan
sin

cos tan sin
y y x x

y y
α

α
α α α
− − −

= +
−

 (5) 

where (x, y) are the coordinates of the intersecting bearings 
(i.e. the position estimate of node R), (xi, yi) are the 
coordinates of the centre of array Ti, and αi is the bearing of 
R from Ti. 

When the target position is directly between the two 
reference points (Figure 5b), two bearings are not sufficient 
to determine position, because the target could be located at 
any point on that axis. Therefore, a third bearing is required 
to disambiguate. However, three bearings may not intersect at 
the same point if any one bearing is inaccurate (Figure 5c). 
Triangulation techniques are presented in the works of 
McGillem and Rappaport (1989), Niculescu and Nath 
(2003), Nasipuri and el Najjar (2006), and Betke and 
Gurvits (1997), in which position estimation using more 
than two bearings is considered. The method we chose was 
a least squares orthogonal error vector solution based on the 
work of Ash and Potter (2007) and Doğançay (2005), which 
is rapid, has low complexity, and still provides accurate 
position estimates from noisy bearing measurements. 

Figure 5 Triangulation. (a) As few as two bearings from known positions are required to estimate the position of a target. (b) Degenerate 
case where a third bearing is needed to disambiguate position. (c) Three bearings may not intersect at the same position  
(see online version for colours) 

 
 (a) (b) (c) 
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Least squares triangulation using orthogonal error vectors 
works as follows. Figure 6 illustrates a simplified set-up 
with a single TripLoc anchor (Ti) and target receiver node 
(R). The actual bearing from the anchor to the target is 
denoted as βi and the estimate as ˆ .iβ  Similarly, the vector 
pointing from the anchor position to the actual target 
position is denoted as vi and the estimated bearing vector as 
ˆ .iv  Note that we have not estimated the length of ˆ ,iv  but 

only its bearing. Finally, we denote the difference between 
the actual and estimated bearing vectors as the orthogonal 
error vector ei, such that T ˆ 0.i i =e v  

Figure 6 Least squares triangulation using orthogonal error 
vectors (see online version for colours) 

 

If we let 
ˆsin

,
ˆcos
i

i

i

β

β

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
a  then the orthogonal error vector is 

formally defined as 

( )ˆsin ,i i i i iβ β= − −e R T a  

where i−R T  is the distance between the target and 

anchor position vectors, ˆ
i iβ β−  is the Gaussian bearing 

noise with zero mean and variance 2 ,iσ  and ai is the unit 
vector orthogonal to ˆ .iv  

The position of the target can be represented as 
ˆ .i i i= + +R T v e  To remove ˆ ,iv  we multiply with the 

transpose of ai, resulting in 
T T ,i i i iη= +a R a T  

where ( )ˆsin .i i i iη β β= − −R T  Considering all anchors  

(i = 1,…, N), we have a system of equations that take the form 

AR = b + η 

where 1 2, ,..., N⎡ ⎤= ⎣ ⎦
TT T TA a a a  and 1 1 2 2, ,...,⎡= ⎣

T Tb a T a T  

.N N ⎤⎦
T

Ta T  A least squares solution for estimating R is given 

by 

( ) 1T Tˆ b
−

=R A A A  

 

where R̂  is the position estimate returned by the 
triangulation using noisy bearing measurements from N 
anchors. 

4 Error analysis 

In this section, we present an error analysis of our bearing 
and position estimation techniques using TripLoc. It is 
important to note that, although we use phase differences as 
input to our bearing estimation algorithm, the algorithm is 
generalisable to small-aperture sensor arrays that can derive 
distance differences using any means. For instance, RF ultra 
wide band antenna arrays, acoustic or ultrasonic sensors and 
other types of arrays that can yield time-difference-of-
arrival measurements from (sufficiently) distant sources fall 
into this category. Therefore, in this section, we assume the 
inputs to be distance differences. Notice that the distance 
differences are linearly related to RIM measurements  
[see equation (2)], and therefore the error sensitivity results 
presented below remain valid. In the generalised case, the 
same applies to TDOA measurements, from which the 
distance differences can be computed via multiplication of 
the respective signal propagation speed (speed of sound for 
acoustic, speed of light for RF). 

4.1 Bearing estimation error analysis 
Typically, bearings are computed from distance differences by 
solving a nonlinear set of equations using iterative techniques. 
Such techniques are prohibitive on low-end microprocessors 
due to their computational cost. We make a set of assumptions 
that allows us to compute bearing estimates in a reasonably 
simple way. While our bearing estimation technique is 
computationally less expensive than traditional nonlinear 
optimisation techniques, our simplifying assumptions introduce 
estimation errors, which we identify below. 

• Measurement noise: The distance differences observed 
by the receiver nodes contain measurement noise. The 
measurement noise can be attributed to, for instance, 
non-ideal signal propagation, noise from the electrical 
circuitry of the receiver, sampling error and 
quantisation error of the analogue-to-digital converter. 

• Asymptote approximation: For a pair of transmitters, we 
approximate the bearing of the receiver with the angles 
of the asymptotes of the hyperbola. This is a good 
approximation if the receiver is sufficiently far from the 
transmitters, because the hyperbola converges on its 
asymptote. However, for close receivers, errors due to 
this assumption will not be negligible. 

• Translation of bearing candidates: At least two 
transmitter pairs are required to unambiguously 
compute the bearing because, for just one transmitter 
pair, the angles of both asymptotes are possible  
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solutions. Since, for a transmitter pair, we compute the 
bearing candidates with respect to the midpoint of the 
segment defined by the two antennas, fusing bearing 
candidates from two different transmitter pairs is not 
possible without knowing the distance of the receiver. 
We use the far-field assumption (i.e. that the receiver is 
infinitely far from the transmitter array) to carry out the 
disambiguation and fusion of bearings, introducing an 
error this way. 

We intentionally omit the analysis of array position and 
orientation errors and instead make the following assumptions: 

• Antenna configuration is known: The transmitter 
locations are assumed to be given. It is assumed that the 
transmitter nodes are fabricated with a prescribed 
antenna separation. 

• Relative bearings: We assume that the computed 
bearings are given in the local coordinate system of the 
array. Hence, the location and orientation errors of  
the array are not considered in the error analysis of the 
bearing estimation. 

We first analyse the sensitivity of the bearing estimates to noise 
in the distance difference inputs. Second, we analytically derive 
the errors related to the asymptote approximation and to the 
translation of bearing candidates. These errors depend on  
the bearing and distance of the target receiver, relative to the 
transmitter array. Finally, we provide an analysis of the total 
bearing estimation error resulting from both noise in the inputs 
and the errors due to the asymptote approximation and the 
translation of bearing candidates. 

4.1.1 Sensitivity of bearing to measurement noise 

A distance difference from a pair of transmitters in the array 
constrains the location of the receiver to one arm of a 
hyperbola, the foci of which are the positions of the two  
 

transmitters. For the sake of simplicity, let us assume that 
the two transmitters P and A1 are located at (c, 0) and (–c, 0), 
respectively (see Figure 3). If the measured distance 
difference is positive, the receiver is constrained to the right 
arm of the hyperbola, while if the distance difference is 
negative, the receiver is located on the left arm. We 
approximate the bearing of the receiver using the asymptote 
angles as follows: 

2 2
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2 2
1

if 0

ˆ if 0
2

if 0

c atan a
a

a

c atan a
a

β

−

−
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⎜ ⎟⎪ ⎝ ⎠

⎪
π⎪= ± =⎨

⎪
⎪ ⎛ ⎞−⎪ ⎜ ⎟π <

⎜ ⎟⎪ ⎝ ⎠⎩
∓

 (6) 

We analyse the sensitivity of the bearing estimates β̂  to 
noise in the distance difference by taking the partial 
derivative of equation (6) with respect to the distance 
difference. To see what amplification effect an error in a 
given distance difference d produces on the bearing 
estimate, we need to evaluate the partial derivative at d. 

Figure 7a shows the relation between the measured distance 
difference d and the bearing candidates β̂  when the antenna 
separation is half the wavelength (λ/2). Notice the ambiguity of 
the bearing candidates. Figure 7b plots ˆ dδβ δ  for each solution 

of ˆ.β  This figure shows that when the absolute value of the 
measured distance difference is close to the antenna separation, 
the computed bearing candidates are very sensitive to 
measurement noise. For instance, if the distance difference is 
80% of the antenna separation, an infinitesimally small error in 
the measurement will be amplified tenfold in the bearing 
estimate. 

Figure 7 (a) Relationship between measured distance difference and computed bearing, (b) sensitivity of the computed bearing to 
measurement noise (see online version for colours) 
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4.1.2 Asymptote approximation 
The error of approximating a hyperbola with its asymptote 
is the difference between the approximated bearing β̂  and 
the actual bearing β of the receiver. Assuming that the 
receiver R is located at (u, v), the actual bearing will be  
β = tan–1(u/v). Hence, the error β̂ β∈= −  introduced by the 
asymptote assumption is  

2 2
1 1

2 2
1 1

if 0

0 if 0

if 0

v c atan tan a
u a

a

v c atan tan a
u a

∈

− −

− −

⎧ ⎛ ⎞−⎛ ⎞⎪ ⎜ ⎟± >⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎝ ⎠
⎪

= =⎨
⎪ ⎛ ⎞−⎛ ⎞⎪ ⎜ ⎟ <⎜ ⎟⎪ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩

∓
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 (7) 

Figure 8 shows the error introduced by the asymptote 
approximation when the receiver is located respectively 
one, two and three times the antenna distance away from the 
midpoint of the segment connecting the two antennas. As 
expected, the error of the approximation decreases as the 
distance of the receiver from the transmitter array increases, 
that is, as the hyperbola converges on its asymptote. As we 
can see, the maximum error introduced by the asymptote 
assumption is less than 0.6°, as little as three antenna 
distances away. 

Figure 8 Error in bearing (in degrees) caused by the assumption 
that the receiver lies on the hyperbola asymptote  
(see online version for colours) 

 

4.1.3 Translation of bearing candidates 

For a pair of transmitter antennas, it is not possible to 
unambiguously approximate the bearing of the asymptote. 
Because the hyperbola arm has two asymptotes, the angle of 
either one can be the correct bearing estimate. Hence, we 
need two transmitter antenna pairs for disambiguation. Let 
us treat the bearing candidates (computed from the t-ranges  
 
 

of both transmitter antenna pairs) as vectors of unit length, 
with bases at the centre of the hyperbolas and whose angles 
are the computed bearing candidates. Since these vectors are 
given in the coordinate system of the respective hyperbolas, 
we need to transform them to the coordinate system of the 
array. This transformation includes a translation and a 
rotation. Then, we translate each vector such that its base is 
at the origin. Clearly, the bearing vector translated this way 
will not point directly toward the target receiver anymore, 
but if the receiver is sufficiently far from the transmitter 
array, the introduced angular error will be small. Finally, we 
disambiguate the bearing candidates by finding two that 
have approximately the same value. 

Let us now express the angular error caused by the 
translation of bearing candidates. We assume that the 
transmitter is a uniform circular array of three antennas, 
with a pairwise antenna distance of less than λ/2. The 
coordinate system of the array is set up such that the 
midpoint of the array is at the origin, and antenna P lies on 
the positive side of the x-axis. Let us consider only the 
correct bearing candidate (the other will be discarded later) 
for the transmitter pair P and A1. Furthermore, let us assume 
for now that the bearing candidate has no error. The 
difference between the actual bearing of the target receiver 
and the angle of the bearing candidate translated to the 
origin gives the angular error of the far-field assumption. 

Figure 9 shows the error introduced by the far-field 
assumption when the receiver is located respectively one, 
two and three times the antenna distance away from the 
midpoint of the segment connecting the two antennas. As 
we can see, as few as three antenna distances away, the 
maximum error introduced by the far-field assumption is 
less than 5°. In this particular antenna arrangement, the 
maximum errors are at 15° and 225°, respectively. 

Figure 9 Error in bearing (in degrees) caused by the assumption 
that the bearing from the midpoint of the segment 
connecting the two antennas equals the bearing from 
the origin of the array coordinate system (see online 
version for colours) 
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4.1.4 Compound bearing estimation error 
Since one transmitter pair reports two bearing candidates, at 
least two transmitter pairs are required to resolve this 
ambiguity. For the sake of simplicity, let us assume that we 
have two transmitter pairs. Clearly, there must be one bearing 
candidate for each transmitter pair that is close to the true 
bearing. Except for some degenerate cases, the other two 
bearing candidates will be significantly different than the true 
bearing and will not be close to each other (see Figure 4). 
Therefore, in order to disambiguate between the correct and 
incorrect bearing candidates, we take all possible pairs of 
bearing candidates, one from the first transmitter pair and the 
other from the second transmitter pair and find the pair with the 
least pairwise angular difference. The reported bearing estimate 
is computed as the average of the two closest bearing candidates. 

Figure 10 shows the bearing estimation errors considering 
the above three types of error sources, averaged over 500 
simulation rounds. We added a Gaussian noise to the distance 
differences, with zero mean and standard deviation set to 5% of 
the antenna distance. The plot suggests that the expected 
bearing estimation errors are below 5°, and peak around 30°, 
150°, 240° and 330°, exactly where the individual transmitter 
pairs exhibit high error sensitivity. 

4.2 Position estimation error analysis 
Our localisation technique uses triangulation to compute the 
position of the receiver nodes. Triangulation is a well-studied 
localisation method (McGillem and Rappaport, 1989; Betke 
and Gurvits, 1997; Niculescu and Nath, 2003; Nasipuri and  
el Najjar, 2006); therefore, we omit a detailed evaluation and 
refer the reader to the above references. Instead, we only 
present simulation results that demonstrate the effects of error 
from different sources. The simulation results will also serve as 
a reference to evaluate our experimental results. 

We consider three different sources of error: position error 
of the arrays, orientation error of the arrays and bearing 
estimation error. 

Figure 10 Absolute error of bearing estimation (in degrees) 
caused by noisy distance differences, averaged over 
500 simulation rounds. The standard deviation of the 
distance difference errors is 5% of the antenna distance 
(see online version for colours) 

 

4.2.1 Position error of the arrays 

For simplicity, let us assume that we have two arrays T1 and 
T2, located at (0, 0) and (u, 0), respectively. We model the 
error of array positioning by varying u around a nominal 
value of 20 m. Note that we can omit analysis of the effect 
of varying the y-coordinate of T2, since an error in both 
coordinates of T2 can be modelled by an error in the  
x-coordinate and an orientation error of T1. 

Figure 11 shows the localisation error caused by error in 
the x-coordinate of array T2, while all other sources of error 
are eliminated. As we can see, the maximum errors in the  
20 m × 20 m sensing region are approximately 0.15 m, 0.3 
m and 0.5 m for array position errors of 0.1 m, 0.2 m and 
0.3 m, respectively. 

Figure 11 Contour map of location errors (in metres) caused by (a) 0.1 m, (b) 0.2 m and (c) 0.3 m error in the x coordinate of array T2, 
respectively (see online version for colours) 

       
 (a) (b) (c) 
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4.2.2 Orientation error of the arrays 
To simulate the effects of orientation error, we vary the orientation 
of array T2 around its nominal value. This is simulated by 
adding a constant to the bearings reported from T2. 

Figure 12 presents the localisation error due to 1, 4 and 8° 
of orientation error of T2, eliminating all other error factors. As 
expected, if the receiver is close to the line defined by the two 
arrays, even a small orientation error will cause a considerable 
localisation error. This is because the lines defined by the 
bearings intersect at an angle close to 180°, and even a small 
error in the angles causes a considerable relocation of the 
intersection. The simulation results show that this particular 
configuration is very sensitive to orientation errors: with an 
orientation error of 1°, we see 0.5 m localisation errors in the 
sensing region. With an orientation error of 4°, the expected 
errors are close to 3 m, while with 8° orientation error, the 
localisation errors become unacceptably large in most of parts 
of the sensing region. 

4.2.3 Bearing estimation error 

We now present simulation results to characterise the effect 
of bearing estimation errors on the computed locations. We  

assume that the location and the orientation of two antenna 
arrays are known. Furthermore, we assume that the bearing 
estimates have additive white noise. We model the noise 
with a Gaussian random variable with zero mean and a 
known standard deviation σ. It is assumed that the noise in 
the bearings from arrays T1 and T2 are uncorrelated. 

Through 100 simulation rounds, we compute the 
standard deviation of localisation errors for all points on a 
high-resolution grid covering the entire sensing region. 
Figure 13 shows the simulation results for bearing errors 
with standard deviation σ = 4°, σ = 5° and σ = 6°, 
respectively. The results suggest that standard deviation of 
the position errors is high when the receiver is close to the 
line connecting the two arrays, and increases towards the 
edge of the sensing region. The central part of the sensing 
region gives the lowest error variance. As we increase the 
standard deviation of the bearing error, the standard 
deviation of the location error also increases. As the 
standard deviation of the bearing error increases, 
localisation precision degrades. With 6° standard deviation 
of bearings, only the central part of the sensing region offers 
less than 1.5 m location error variance. 

Figure 12 Contour map of location errors (in metres) caused by (a) 1°, (b) 4° and (c) 8° errors in the orientation of array T2, respectively 

       
 (a) (b) (c) 

Figure 13 Standard deviation of location error (in metres) caused by bearing noise with zero mean and standard deviation (a) σ = 4°,  
(b) σ = 5° and (c) σ = 6°, respectively 

       
                  (a)                (b)           (c) 
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5 Implementation 

Our system is implemented on Crossbow ExScal motes 
(Dutta et al., 2005), which use the Texas Instruments 
CC1000 radio chip (Texas Instruments, 2007), and transmit 
in the 433 MHz range. Three XSMs form a TripLoc array. 
Because the two transmitting antennas are so close to each 
other, they will suffer from parasitic effects (Carr, 2001). To 
minimise this negative interference, we place the nodes in a 
mutually orthogonal configuration. The nodes are elevated 
approximately 1.5 m to reduce ground-based reflections. 
The TripLoc antenna array is pictured in Figure 1. 

All nodes in our system execute the same distributed 
application, coded in nesC (Gay et al., 2003), and run the 
TinyOS operating system (Hill et al., 2000). All operations 
run locally, and there is no offline or PC-based processing. 
The entire application requires 3 kB of RAM and 57 kB of 
program memory (ROM). 

5.1 Antenna separation 
The antenna separation of the TripLoc array is 35.35 cm. In 
order to avoid the modulo 2π phase ambiguity, we were 
required to transmit a signal with wavelength greater than  
70.7 cm (i.e. a frequency less than 424 MHz). This was 
possible, as we observed reliable CC1000 transmissions as low 
as 405 MHz. Ultimately, we chose to transmit at a carrier 
frequency of 409 MHz, corresponding to a wavelength of 73 cm. 

5.2 Initialisation 
Before starting the localisation process, system initialisation 
is required. 

5.2.1 Scheduling 
First, we must create a schedule declaring the order that 
array anchors perform their RIMs. This schedule is 
broadcast to all anchors in the sensing region. During run-
time, the anchors keep track of who is currently performing 
the RIM. The next anchor in the schedule will then know to 
begin its RIM when the previous one ends. 

5.2.2 Tuning 
One of the issues that arises when using the CC1000 is that 
the true carrier frequency can differ from that of the desired 
frequency by up to 2 kHz. In order to account for this, we 
must tune the radios by having the primary and assistant 
nodes transmit at the intended frequencies, while a third 
node monitors the signal. The primary node then changes its 
transmission frequency in small steps. The receiver observes 
the resulting beat frequency, and when it matches the 
desired one, informs the primary node. From this point on, 
the primary node transmits at this new frequency, in order to 
maintain a consistent interference signal. 

5.2.3 Calibration 
Finally, we note that it is difficult to fix exact array orientations. 
If the array is not level, or is rotated slightly, the shape of the 
resulting hyperboloid will degrade the localisation result. An 

easy way around this is to place one or more sensor nodes at 
known positions and run the bearing estimation algorithm. 
Because all positions are known, bearings between the sensor 
nodes and arrays are also known. The difference between the 
actual bearings and the computed bearings indicate the true 
orientation of the arrays. By using this simple, yet effective 
technique, we saw the bearing error decrease by 56%. 

5.3 Radio interferometric measurements 
We perform radio interferometric measurements using the 
technique presented and evaluated by Maróti et al. (2005). A 
RIM consists of several tasks, executed sequentially according 
to a strict schedule. In order to transmit or receive the RF signal 
at the desired frequency, the radio must be acquired from the 
MAC layer. Once the radio is acquired, nodes are unable to use 
their radios for standard message passing, so each node 
participating in the RIM executes each task in lockstep. 
Therefore, before acquiring the radio from the MAC layer, the 
first step is to synchronise the participating nodes. 

5.3.1 Time synchronisation 
Because phase difference is used to determine bearing, each 
node must measure the signal phase at the same time instant. 
This requires synchronisation with accuracy on the order of 
microseconds or better. To accomplish this, we use a SyncEvent 
(Kusý et al., 2006), the same technique employed by RIPS and 
other radio interferometric based ranging methods. A message 
is broadcast by the primary transmitter that contains a time in 
the near future to start the RIM. The time is specified according 
to the local clock of the primary node. The clock offset 
between the sender and receiver of this message is determined 
as follows. The sender inserts a timestamp at the end of the 
message after the message has already begun transmission. On 
the receiver side, a timestamp is taken upon message reception. 
Because the propagation time of the message through air is 
negligible, the difference between these two timestamps 
approximates the clock offset between the two nodes. Clock 
skew is not an issue here because synchronisation is performed 
at the beginning of the RIM, and relative clock rate does not 
noticeably change in the time it takes to perform the RIM. One 
advantage of this type of synchronisation is that any number of 
receiver nodes within the broadcast range can participate, 
because the broadcast message is received at all nodes at 
approximately the same time. 

5.3.2 Acquiring the radio 
The first task each node (transmitter and receiver) must 
perform after synchronisation is acquiring the radio from the 
MAC layer. This involves switching radio drivers to enable the 
transmission/reception of a pure sine wave at the desired 
frequency, a feature the standard radio driver does not support. 

5.3.3 Radio calibration 
Once the radio has been acquired, we must calibrate it for 
transmission at the desired frequency. To do this, we use 
previous calibration data (as described by Maróti et al., 
2005), which avoids the time-consuming calibration step 
that automatically occurs in the restore task. 
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5.3.4 Signal transmission/reception 

In order to determine the signal phase, we must sample enough 
RSSI values to reconstruct the signal. This requires a 
transmission/reception time that is long enough to sample 
about six periods, from which we can use filtering techniques 
to obtain a fairly smooth sinusoid. As each RSSI value is 
obtained, it is inserted into a 256-byte buffer. At the end of the 
sampling period, we traverse the buffer, keeping track of the 
minimum and maximum values, from which we can determine 
the signal amplitude and frequency. Once these signal 
characteristics are known, we can determine the phase of the 
signal at the specified time instant. 

5.3.5 Restoring the radio 

Once the transmission is complete, the standard radio must 
then be restored to its original state in order to exchange the 
phase data between nodes. 

5.4 Bearing approximation and triangulation 
After each array performs its RIMs, the assistant nodes 
broadcast their observed phase data, which are received by 
the target receiver nodes. The phase data packets are small, 
only 12 bytes long, five of which comprise the standard 
active message header, two for the assistant ID, one for the 
sequence number and four bytes for the measured phase. 
For redundancy, the data packets are broadcast three times 
(with a small random delay to avoid contention between 
nodes); however, any messages that arrive after the 
communication deadline of 250 ms will be discarded. The 
communication deadline signals the start of the localisation 
process. The localisation method performs both bearing 
approximation and triangulation and is optimised for 
memory and speed. The localisation result is sent to a base 
station for logging; however, for mote applications that 
require the position updates, no routing is required and the 
position estimate is readily available. 

5.5 Latency analysis 

Because we would like to use TripLoc to localise mobile 
sensors in addition to stationary nodes, each array must 
perform its RIMs as fast as possible so that the mobile sensor 
has not had a chance to significantly change its position. In 
order to keep the localisation latency to a minimum, we 
provide an analysis of the different component execution times. 

Table 1 lists the execution deadlines of the tasks presented 
above. These deadlines were chosen to give each task enough 
time to complete, assuming a reasonable amount of jitter and 
were determined experimentally. Each array performs two 
RIMs, one for each primary-assistant pair. For each array, only 
one synchronisation message is broadcast at the beginning of 
the first RIM. When a RIM completes, a measurement Ended() 
event is triggered on each participating node. This includes 
nodes belonging to other arrays, even if they took no part in the 
phase measurement. The event enables the next array in the 
schedule to begin its RIM without delay. The receiver nodes  
 

store their phase measurements for each array until all arrays 
have finished their RIMs. After all arrays have finished, the 
participating assistants broadcast their phase measurements and 
the receiver nodes calculate their bearings to each array. We 
allow 125 ms for sending phase measurements. Localisation 
takes no longer than 6.5 ms, after which the first array begins 
its next round of RIMs. 

Table 1 Latency of localisation tasks 

Task Latency (ms) 

Synchronise 163 
Acquire 5.4 
Calibrate 1.08 
Transmit/Receive 63.2 
Restore 49.91 
Report phase 125 
Localise 6.5 

Figure 14 is a sequence diagram of these events using a set-up 
of two arrays and a single receiver node. Because the target 
nodes act as receivers, no additional latency is incurred by 
introducing more to the sensing region. Each array sends one 
synchronisation message and performs two RIMs, for a total 
time of 402.18 ms. After all arrays have performed their RIMs, 
an additional 130.5 ms is required for communication and 
localisation. Therefore, localisation using two arrays will take 
no longer than 0.93 s, three arrays will take no longer than 1.34 s 
and no longer than 1.74 s when using four arrays. It should be 
noted that this latency can be further decreased by removing 
subsequent synchronisation messages after the first one. 
Because a round of RIMs takes a relatively short time, clocks 
will not experience a significant amount of drift. In addition, 
the time allotted to report phases is much greater than is 
actually needed and can be shortened, if necessary. We chose 
to set it longer to ensure we received all measurement data for 
analysis and debugging purposes. From this latency analysis, 
we see that a sufficient number of arrays can perform RIMs to 
enable a receiver node to determine its position in less than 1 s. 

Figure 14 Sequence diagram of a RIM schedule with two arrays 
(dotted boxes) and a receiver node (R) 
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6 Evaluation 

To evaluate the accuracy of TripLoc, we performed three 
sets of experiments. The first two experiments measure the 
bearing accuracy of the system and the third experiment 
measures the localisation accuracy. 

6.1 Bearing accuracy 
For Experiment 1, we measure the bearing accuracy of six 
receiver nodes, which are evenly spaced around the array every 
60° at a distance of 10 m from the array centre (Figure 15a). 
This experiment demonstrates how the bearing error changes 
with respect to array orientation. We performed 50 bearing 
estimates for each node surrounding the array. The average 
bearing errors are displayed in Figure 16. 

For Experiment 2, we measure the bearing accuracy of 14 
receiver nodes from three arrays surrounding the sensing region 
in an outdoor, low-multipath environment (Figure 15b). This 
experiment is more representative of a real-world deployment 
with multiple anchors. We performed approximately 35 bearing 
estimates from each anchor to all target nodes, resulting in a 
total of 105 estimates per target and 1470 estimates total. The 
distribution of bearing estimate errors is shown in Figure 17. 
The average bearing estimation error is 3.2° overall, with a 6.4° 
accuracy at the 90th percentile. The errors from both experiments 
are consistent with our bearing error analysis in Section 4. 

Figure 15 Experimental set-up for bearing accuracy of TripLoc: 
(a) Experiment 1: Bearing accuracy of one array.  
Six receiver nodes (R1…R6) are placed 10 m from array 
(A), with angular separation of 60°, (b) Experiment 2: 
Three arrays (A1…A3) surround the 20 m × 20 m 
sensing region containing 14 target receiver nodes 
(R1…R14) (see online version for colours) 

 

Figure 16 Experimental results: Experiment 1 average bearing error 
with respect to array orientation (sample size of 50) 

 

Figure 17 Experimental results. Experiment 2 bearing error 
distribution (sample size of 1470) (see online version 
for colours) 

 

6.2 Localisation accuracy 

For Experiment 3, we place four TripLoc array anchors at the 
corners of a 20 × 20 m sensing region containing 16 target 
receiver nodes in a slightly randomised grid. The anchor nodes 
are set back from the target nodes in order to minimise the 
position error that results at sensitive bearings (see Section 4; 
an evaluation of node placement at sensitive bearings was 
performed by Amundson, 2010). Each target node periodically 
estimates its position using the bearing estimation and 
triangulation techniques presented in Section 3. Figure 18 
illustrates our set-up for this experiment. 

Figure 18 Experimental set-up for localisation accuracy of TripLoc 
(Experiment 3). Four arrays (A1…A4) surround the  

20 × 20 m sensing region containing 16 target receiver 
nodes (R1…R16) (see online version for colours) 

 

For Experiment 3, we perform 100 position estimates for each 
target node. Figure 19 shows the average position estimate for 
each target relative to its actual position. The distribution of 
position estimate errors is shown in Figure 20. The average 
overall position error is 0.78 m. 
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Figure 19 Experiment 3 average position estimate for each target 
relative to actual position. Arrows connect the 
estimated position of a target node with its actual 
location (see online version for colours) 

 

Figure 20 Experiment 3 position error distribution (sample size  
of 1600) (see online version for colours) 

 

7 Conclusion 

In this paper, we present a method for rapid distributed 
bearing estimation and localisation in WSNs. The array 
anchor in our system consists of three nodes, two of which 
transmit at frequencies that interfere to create a low-
frequency beat signal. The phase of this signal is measured 
by the third node in the array, as well as by multiple target 
nodes at unknown positions. The phase difference defines a 
hyperbola, and bearing can be approximated by calculating 
the angle of the asymptote. Our experimental results show 
that this technique has an average bearing estimation 
accuracy of 3.2°, average position accuracy of 0.78 m and 
measurements can be taken in approximately 1 s. 

Our system is designed to overcome several challenges in 
WSN AOA localisation. The array prototype is easily constructed 
by fixing three motes together with antennas at orthogonal 
angles. It is comprised entirely of COTS sensor nodes, and no 
additional hardware is required because RIM-based ranging 
only requires use of the mote radio. Unlike other radio 
interferometric techniques, our system avoids the modulo 2π 
ambiguity, and therefore the need to perform RIMs on multiple  
 

channels, by separating the two transmitting antennas less than 
half the wavelength of the carrier frequency. Similarly, by 
constraining the location of one of the RIM receivers to the 
array, it becomes possible to approximate the bearing of the 
other receiver without prolonged computation or having to rely 
on a base station for processing. 
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